HYBRID ELECTRIC VEHICLES

CourseCode	19EE4801B	Year	IV	Semester	II
Course Category	Program Elective-VI	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

	Course Outcomes						
Upon s	Upon successful completion of the course, the student will be able to						
CO1	CO1 Define and Explain the basics of electric and hybrid electric vehicles, their architecture,						
	technologies and fundamentals.						
CO2	Explain the fundamentals of vehicle movement and performance of electric vehicle.(L2)						
CO3	Analyze various electric drives suitable for hybrid electric vehicles.(L4)						
CO4	Discuss different energy storage technologies used for hybrid electric vehicles and their						
	control.(L6)						
CO5	Analyse the use of different power electronics devices and electrical machines in hybrid						
	electric vehicles.(L4)						

Strength of Correlation between CO – PO , CO- PSO in scale of 1-3

1: Slight (low), 2: Moderate (medium) 3: Substantial (High)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3		2			3	2	1				3	3	2
CO2	3		3			2	3	1				3	3	2
CO3	3		2			3	3	1				3	3	2
CO4	3		3			3	1	1				3	3	1
CO5	3		3			3	2	1				3	3	3

	Syllabus					
Unit	Contents	Mapped				
No.		CO				
I	Introduction to Hybrid Electric Vehicles History of hybrid and electric vehicles, social and environmental importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies. Vehicle fundamentals General Description of Vehicle Movement, Vehicle Resistance, Dynamic Equation, Basics of vehicle performance and braking performance.	CO1, CO2				
II	Hybrid Electric Drive-trains Basic concept of hybrid drive train, introduction to various hybrid drive- train topologies. Electric Drive-trains	CO1, CO2				

	Introduction to various electric drive-train topologies, Performance of						
	Electric Vehicle Treative offert in normal driving Energy Consumption						
TTT	Electric Vehicle, Tractive effort in normal driving, Energy Consumption.						
III	Electric propulsion system						
	Introduction to electric components used in hybrid and electric vehicles,						
	Configuration and control of DC Motor drives, Configuration and control of						
	Induction Motor drives, Vector control of AC Drives, PMSM Drives, SRM						
	Drives, Advanced Control Strategies.						
IV	Energy Storage						
	Introduction to Energy Storage Requirements in Hybrid and Electric	CO4					
	Vehicles, Battery based energy storage and its analysis, Fuel Cell based						
	energy storage and its analysis, Hybridization of different energy storage						
	devices.						
V	Power Electronics Control						
	Power Electronics in HEVs: Power electronics including switching, AC-DC,	CO5					
	DC-AC conversion, electronic devices and circuits used for control and						
	distribution of electric power, Thermal Management of HEV Power						
	Electronics.						
	Learning Resources						
Text Bo	ooks						
1. Iqbal	Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2003	5					
2. Mehro	dad Ehsani, YimiGao, Sebastian E. Gay, Ali Emadi, Modern Electric, Hybrid						
Electr	ic and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press, 2004	•					
Referen	nce Books						
1. James	Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley, 2003.						
	Leitman, "Build Your Own Electric Vehicle" MC Graw Hill, 1st Edition, 2013.						
	rces & other digital material						
1. https	://nptel.ac.in/courses/108/103/108103009/						